Автор24

Информация о работе

Подробнее о работе

Страница работы

Магнитные наночастицы, как средство влияния на релаксационные свойства водородосодержащих биологических сред

  • 61 страниц
  • 2014 год
  • 482 просмотра
  • 0 покупок
Автор работы

user186168

Магистр

1200 ₽

Работа будет доступна в твоём личном кабинете после покупки

Гарантия сервиса Автор24

Уникальность не ниже 50%

Фрагменты работ

1.Введение
На сегодняшний день невозможно представить современную медицину без лучевой диагностики, включающую в себя протонно-эмиссионную томографию, рентгеновскую и магнитно- резонансную томографию (МРТ). Внедрение в клиническую практику метода МРТ позволило вывести диагностические возможности медицины на качественно новый уровень. За свои работы по изучению магнитно-резонансной визуализации (МРВ) Пол С. Латербур и Питер Менсфилд получили Нобелевскую премию в 2003 году[44].
Оптимизация результатов диагностической картины достигается использованием магнитно-резонансных контрастных средств (МРКС). Визуализация с применением контрастного средства позволяет значительно увеличить объем диагностической информации, позволяя оценивать динамику патологических процессов с необходимыми временными и пространственными разрешениями, повысить разрешение и контрастность при анализе малых объектов, достоверно отличить очаги патологий от здоровых тканей[57]. Основными областями применения контрастных средств являются диагностика и идентификация онкологических образований, в том числе метастазирования, а также заболеваний сердечно-сосудистой системы.
На настоящий момент используются парамагнитные контрастные средства, содержащие гадолиний, имеющие ряд недостатков: токсичность и визуализация объектов только по одному основному параметру Т1(время спин-решеточной релаксации)[26]. В связи с чем, актуальным является разработка нового контрастного средства для МРТ – диагностики, превосходящего по функциональным свойствам уже существующие препараты.
Альтернативным контрастным средством может служить препарат, синтезированный с применением современных нанотехнологий, на основе суперпарамагнитных частиц сложного оксида железа – магнетита. Наночастицы магнитных материалов, с размером частиц соизмеримым с размером магнитного домена, при внесении их во внешнее магнитное поле, выстраиваются в нем без энергетических потерь на междоменное взаимодействие, что позволяет значительно повлиять на характерные времена протонной релаксации исследуемых сред и ключевые параметры для магнитно-резонансной визуализации. Требованием, предъявляемым к новому контрастному средству, кроме достижения необходимых релаксационных свойств, является биологическая совместимость используемых наночастиц с основными тканями организма, а также длительная стабильность водного раствора на их основе[43]. Анализ литературных данных показал, что основные свойства наночастиц, а также растворов на их основе, определяются их размером, который контролируется выбором метода и режимов их синтеза[3]. Необходимо учитывать, что практическое применение принципиально нового контрастного средства может потребовать корректировку существующих МРТ - методик анализа очагов патологий[31].
В связи с выше изложенным, целью данной работы является получение коллоидных растворов, содержащих наночастицы оксида железа различных размеров, и исследование их протонно-релаксационных свойств.
.
Для достижения данной цели были поставлены следующие задачи:
1) Определить режимы метода химического синтеза наночастиц сложного оксида железа с учётом требований к их функциональным свойствам.
2) Определить релаксирующую способность полученных растворов наночастиц оксида железа.
3) Определение цитотоксичности раствора наночастиц сложного оксида железа с помощью МТТ- теста.

Оглавление
1.Введение……………………………………………………………..............5
2.Обзор литературы…………………………………………………………...7
2.1.Наночастицы магнетита, их свойства и возможности использования в фармакологии и медицине……………………………………………………….7
2.1.1. Наночастицы магнетита, основные свойства……………………............7
2.1.2.Магнитные свойства НЧОЖ. Суперпарамагнетизм и ферримагнетизм..............................................................................................10
2.2. Протонная релаксометрия …………………………………………............11
2.3. Применение наночастиц магнетита в качестве основы для контрастного средства при МРТ диагностике…………………………………………………16
2.3.1. Метод МРТ-диагностики………………………. ………………………16
2.3.2.Клиническое применение МРТ…………………………………………...17
2.3.3.Показаниями для проведения МРТ с контрастным средством…………………………………………………………………….....19
2.3.4.Противопоказания к МРТ…………………………………………………20
2.4.Классификация магнитно-резонансных контрастных средств…………...25
2.5.Взаимодействие наночастиц оксида железа с клетками. Роль стабилизации…...............................................................................................27
3.Материалы и методы……………………………………………………….31
3.1. Методика экспериментального исследования…………………………….32
3.2.Исследуемые соединения и реактивы……………………………………...31
3.3. Методика получения суперпарамагнитных и ферримагнитных
наночастиц сложного оксида железа…………………………………………...33
3.4. Просвечивающая электронная микроскопия……………………………...34
3.5.Измерения протонно-релаксационных свойств НЧОЖ…………………...34
3.6.Клеточная культура фибробластов крысы………………………………....37
3.7.МТТ-тест……………………………………………………………………..38
3.8. Методы статистической обработки данных……………………………….40
4. Результаты и их обсуждение………………………………………………41
4.1.Синтез растворов на основе наночастиц…………………………………...41
4.2.Анализ кривых спада времен релаксации………………………………….44
4.3.Оценка влияния соединений железа на жизнеспособность фибробластов МТТ-тестом……………………………………………………………………....48
Выводы……………………………………………………………………….51
Список литературы…………………………………………………………..52

1.Введение
На сегодняшний день невозможно представить современную медицину без лучевой диагностики, включающую в себя протонно-эмиссионную томографию, рентгеновскую и магнитно- резонансную томографию (МРТ). Внедрение в клиническую практику метода МРТ позволило вывести диагностические возможности медицины на качественно новый уровень. За свои работы по изучению магнитно-резонансной визуализации (МРВ) Пол С. Латербур и Питер Менсфилд получили Нобелевскую премию в 2003 году[44].
Оптимизация результатов диагностической картины достигается использованием магнитно-резонансных контрастных средств (МРКС). Визуализация с применением контрастного средства позволяет значительно увеличить объем диагностической информации, позволяя оценивать динамику патологических процессов с необходимыми временными и пространственными разрешениями, повысить разрешение и контрастность при анализе малых объектов, достоверно отличить очаги патологий от здоровых тканей[57]. Основными областями применения контрастных средств являются диагностика и идентификация онкологических образований, в том числе метастазирования, а также заболеваний сердечно-сосудистой системы.
На настоящий момент используются парамагнитные контрастные средства, содержащие гадолиний, имеющие ряд недостатков: токсичность и визуализация объектов только по одному основному параметру Т1(время спин-решеточной релаксации)[26]. В связи с чем, актуальным является разработка нового контрастного средства для МРТ – диагностики, превосходящего по функциональным свойствам уже существующие препараты.
Альтернативным контрастным средством может служить препарат, синтезированный с применением современных нанотехнологий, на основе суперпарамагнитных частиц сложного оксида железа – магнетита. Наночастицы магнитных материалов, с размером частиц соизмеримым с размером магнитного домена, при внесении их во внешнее магнитное поле, выстраиваются в нем без энергетических потерь на междоменное взаимодействие, что позволяет значительно повлиять на характерные времена протонной релаксации исследуемых сред и ключевые параметры для магнитно-резонансной визуализации. Требованием, предъявляемым к новому контрастному средству, кроме достижения необходимых релаксационных свойств, является биологическая совместимость используемых наночастиц с основными тканями организма, а также длительная стабильность водного раствора на их основе[43]. Анализ литературных данных показал, что основные свойства наночастиц, а также растворов на их основе, определяются их размером, который контролируется выбором метода и режимов их синтеза[3]. Необходимо учитывать, что практическое применение принципиально нового контрастного средства может потребовать корректировку существующих МРТ - методик анализа очагов патологий[31].
В связи с выше изложенным, целью данной работы является получение коллоидных растворов, содержащих наночастицы оксида железа различных размеров, и исследование их протонно-релаксационных свойств.
.
Для достижения данной цели были поставлены следующие задачи:
1) Определить режимы метода химического синтеза наночастиц сложного оксида железа с учётом требований к их функциональным свойствам.
2) Определить релаксирующую способность полученных растворов наночастиц оксида железа.
3) Определение цитотоксичности раствора наночастиц сложного оксида железа с помощью МТТ- теста.

Список литературы.
1) Berry C., Curtis A. Functionalisation of magnetic nanoparticles for applications in biomedicine // J. Phys. D. Appl. Phys. 2003. V. P.36.
2) Bruce I.J., Sen T. Surface Modification of magnetic nanoparticles with alkoxysilanes and their application in magnetic bioseparations // Langmuir. 2005. V. 21. P. 7029—7035.
3) Ch. H. Vestal, Z.John Zhang // Int.J.of Nanotechnology, V.1, p.240 (2004).(6)
4) Edward A. Neuwelt, Bronwyn E. Hamilton, Csanad G. Varallyay, William R. Rooney,Robert D. Edelman6, Paula M. Jacobs and Suzanne G. Watnick Ultrasmall superparamagnetic iron oxides (USPIOs): a future alternative magnetic resonance (MR) contrast agent for patients at risk for nephrogenic systemic fibrosis (NSF)?//Kidney International (2009) 75, 465–474;
5) Fuentes M., Mateo C., Rodriguez A. et al. Detecting minimal traces of DNA using DNA covalently attached to superparamagnetic nanoparticles and direct PCR-ELISA // Biosensors and Bioelectronics. 2006. V. 21. P. 1574—1580.
6) F. C. Meldrum, N. A. Kotov, J.H. Feodler. Preparation of Particulate Mono- and Multilayers from Surfactant-Stabilized, Nanosized Magnetite Cristallites. American Chemical Society – 1994. – V.98. – P. 4506-4510
7) He X.X., Wang K., Tan W. et al. Bioconjugated nanoparticles for DNA protection from cleavage // J. Am. Chem. Soc. 2003. V. 125. P. 7168—1769.
8) Hong J., Gong P., Xu D. et al. Stabilization of chymotrypsin by covalent immobilization on amine-functionalized superparamagnetic nanogel // J. of Biotechnology. 2007. V. 128. P. 597—605.
9) Jain T.K., Morales M.A., Sahoo S.K. et al. Iron oxide nanoparticles for sustained delivery of anticancer agents // Am. Chem. Soc. 2003. V. 125 (51). P. 15754 —15755.
10) Koneracka M., Kopcansky P., Antalik M. et al. Immobilization of proteins and enzymes to fine magnetic particles // J. Magn. Magn. Mater. 1999. V. 201. P. 427.
11) Koneracka M., Kopcansky P., Timko M. et al. Direct binding procedure of proteins and enzymes to fine magnetic particles // J. Magn. Magn. Mater. 2002. V. 252. P. 409.
12) Kouassi G.K., Irudayaraj J., McCarty G. Activity of glucose oxidase functionalized onto magnetic nanoparticles // BioMagnetic Research and Technology 2005. V. 3 [Электронный ресурс] режим доступа: http://www.biomagres.com/ content/3/1/1.
13) Kin Man Ho, Pei Li. Design and Synthesis of Novel Magnetic Core- Shell Polymeric Particles. American Chemical Society 2008;24(5): 1801-1807
14) Lacava L.M. et al. Magnetic resonance of a dextran-coated magnetic fluid intravenously administered in mice // Biophys. J. 2001.V. 80. P. 2483—2486.
15) Liao M.-H., Chen D.-H. Immobilization of yeast alcohol dehydrogenase on magnetic nanoparticles for improving its stability // Biotechnology Letters. 2001. V. 23. P. 1723—1727.
16) Li X, Du X, Huo T, Liu X, Zhang S, Yuan F. Specific targeting of breast tumor by octreotide-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 3.0-Tesla magnetic resonance scanner.// Acta Radiol. 2009 Jul;50(6):583-94.
17) Louie A.Y., Huber M.M., Ahrens E.T. et al. In vivo visualization of gene expression using magnetic resonance imaging // Nat. Biotechnol. - 2000. - Vol. 18. - P. 321-325.
18) Martinez-Mera I., Espinoza-Pesqueira M.E., Perez-Hernandez R., Arenas-Alatorre J., “Synthesis of magnetite (Fe3 O4 ) nanoparticles without surfactants at room temperature”, Materials Letters, 2007, 61, 4447-4451
19)MacNeil S, Bains S, Johnson C, Idée JM, Factor C, Jestin G, Fretellier N, Morcos SK. Gadolinium contrast agent associated stimulation of human fibroblast collagen production.//InvestRadiol. 2011 Nov;46(11):711-7.
20) Molday R.S., MacKenzie D. Immunospecifc ferromagnetic iron-dextran reagents for the labeling and magnetic separation of cells // J.Immunol. Methods. 1982. V. 52. P. 353—367.
21) Mossman Т. // J. Immunol. Methods, 1983, V. 65, р. 55-63.-45&catid=55:s-22006&Itemid=52
22) M. Taupitz, S. Wagner, J. Schnorr, et al. Phase I Clinical Evaluation of Citrate-coated Monocrystalline Very Small Superparamagnetic Iron Oxide Particles as a New Contrast Medium for Magnetic Resonance Imaging. Investigative Radiology 2004;39:394-405.
23) Pardoe H., Chua-Anusorn W., St. Pierre T. G., Dobson J. Structural and magnetic properties of nanoscale iron oxide particles synthesized in the presence of dextran or polyvinyl alcohol // J. Magn. Magn. Mater. V. 225. P. 41—46.
24) PangS.C., Chin S.F., Anderson M.A., “Redox Equilibria of iron oxides in aqueous-based magnetite dispersions: Effect of the pH and redox potential”, J. Colloid and Interface Sci., 2007, 311, 94-101
25) Pedro Tartaj P., Serna C.J. Synthesis of monodisperse superparamagnetic Fe/Silica nanospherical composites // J. Am. Chem. Soc. 2003. № 125 (51). Р. 15754—15755.
26) Port M., Idee J.M., Medina C. et al. Efficiency, thermodynamic and kinetic stability of marketed gadolinium chelates and their possible clinical consequences: a critical review // Biometals. -2008. - Vol. 21. - P. 469-490.
27) Portet D., Denoit B., Rump E. et al. Nonpolymeric coatings of iron oxide colloids for biological use as magnetic resonance imaging contrast agents // J. Coll. Inter. Sci. 2001. V. 238. P. 37—42.
28) Robinson D.B., Persson H.H.J., Zeng H. et al. DNA-Functionalized MFe2O4 (M = Fe, Co, or Mn) Nanoparticles and Their Hybridization to DNA-Functionalized Surfaces // Langmuir 2005. V. 21. P. 3096—3103.
29) Salata O.V. Applications of nanoparticles in biology and medicine [Электронный ресурс]. Режим доступа: http://www.jnanobiotechnology.com/content/2/1/3
30)Абрагам А., Ядерный магнетизм, пер. с англ., М., 1963
31) Акопджанов А.Г, Шимановский Н.Л., Науменко В.Ю., Семейкин А.В., Старостин К.М., Быков И.В., Манвелов Э.В.. Перспективы применения суперпарамагнитных наночастиц магнетита в качестве магнитно-резонансного контрастного средства. Сборник статей IV съезда фармакологов России. Сентябрь 2012. с.8.
32)Александров И. В., Теория магнитной релаксации. Релаксация в жидкостях и твердых неметаллических парамагнетиках, М., 1975
33)Баранов Д.А., «Магнитные наночастицы: проблемы и достижения химического синтеза», 2009.
34)Белов К.Л. Электронные процессы в магнетите. Успехи физических наук.- 1993г. – Том 163 №5.
35)Вонсовский С. В., Суперпарамагнетизм, в кн.: Физический энциклопедический словарь, т. 5, М., 1966, с. 103; его же, Магнетизм, М., 1971, с. 805.
36)Губин С.П., Кокшаров Ю.А., Хомутов Г.Б., Юрков Г.Ю. Магнитные наночастицы: методы получения, строение и свойства. Успехи химии. – 2005. – № 74(6). – С. 539-574.
37)Зильберман Г.Е. Электричество и магнетизм, М.:Наука, 1970.- 384с.
38)Коновалов А.Н., Корниенко В.Н., Пронин И.Н. Магнитно-резонансная томография в нейрохирургии. – М.: Кондор-М., 1997. – 697 с.
39)Ландау Л. Д., Лифшиц Е. М., Теория поля, 7 изд., М., 1988; Ахиезер А. И., Ахиезер И. А., Электромагнетизм и электромагнитные волны, М., 1985.
40)Лучевая диагностика рассеянного склероза: Т. Н. Трофимова, Н. А. Тотолян, А. В. Пахомов — Санкт-Петербург, ЭЛБИ-СПб, 2010 г.- 128 с.
41)Магнитно-резонансная спектроскопия: Под редакцией Г. Е. Труфанова, Л. А. Тютина — Москва, ЭЛБИ-СПб, 2008 г.- 240 с
42)Магнитно-резонансная томография: практическое руководство К. Уэстбрук, ТД Бином, 2012г.
43)НАМ И. Ф., ЯНОВСКИЙ В. А., ШИПУНОВ Я. А. СОВРЕМЕННЫЕ ТЕНДЕНЦИИ СОЗДАНИЯ КОНТРАСТНЫХ СРЕДСТВ ДЛЯ МАГНИТНО-РЕЗОНАНСНОЙ ТОМОГРАФИИ // СМЖ (Томск). 2012. №3. С.134-137.
44)НиТ. Нобелевские лауреаты, 2003
45) Сивухин Д. В. Общий курс физики. — В 5 т. — Т. II. Термодинамика и молекулярная физика. — М.: ФИЗМАТЛИТ, 2005
46) Синицын В.Е., С.П.Морозов, Справочник поликлинического врача Том 04/N 4/2006, consilium-medicum.com
47)Сликтер Ч., Основы теории магнитного резонанса, пер. с англ., 2 изд., М., 1981
48)Стандарты РКТ и МРТ-исследований с внутривенным контрастированием в онкологии / Долгушин Б.И. и соавт., Российский онкологический научный центр им. Н.Н.Блохина. – РАМН, 2011. – 58 с.
49)Хорнак Дж. П. Основы МРТ (1996—1999)
50) Черепович В.С, Е. В. Волочник,Е. В. Антоненко, Е. С. Лоткова, Т. В. Романовская, В. В. Гринев Оптимизация критических параметров МТТ-теста для оценки клеточной и лекарственной цитотоксичности БГМУ // http://bsmu.by/index.php?option=com_content&view=article&id=1943:2010-01-26-10-10
51)Шимановский Н.Л., Науменко В.Ю., Акопджанов А.Г., Манвелов Э.В. Возможности применения наночастиц магнетита для диагностики и лечения онкологических заболеваний. Лекарственные средства №1(2) 2011.
52)Шимановский Н.Л., Акопджанов А.Г., Сергеев А.И., Манвелов Э.В.,
Семейкин А.В., Науменко В.Ю., Панов В.О., Быков И.В.
Фармакологические свойства наночастиц сложного оксида железа как
субстанции магнитно-резонансного контрастного средства.
53)Шимановский Н.Л.Контрастные средства: руководство по рациональному применению. –М.: ГЭОТАР_Медиа, 2009. – 464 с.: ил. (Библиотека врача_специалиста).
54) Н. Л. Шимановский, М. А. Епинетов, М. Я. Мельников, Молекулярная и нанофармакология, 2010.
55)Экспериментальная и клиническая фармакология. Том №73 №6 с.23-28. 2010.
56) Ядерный магнитный резонанс; под ред. П. М. Бородина, Л., 1.982;
57)Якобсон М.Г., Подоплелов А.В., Рудых С.Б. Введение в МР-томографию. – Новосибирск: СО РАМН. – 1991. – 271 с.









Форма заказа новой работы

Не подошла эта работа?

Закажи новую работу, сделанную по твоим требованиям

Согласен с условиями политики конфиденциальности и  пользовательского соглашения

Фрагменты работ

1.Введение
На сегодняшний день невозможно представить современную медицину без лучевой диагностики, включающую в себя протонно-эмиссионную томографию, рентгеновскую и магнитно- резонансную томографию (МРТ). Внедрение в клиническую практику метода МРТ позволило вывести диагностические возможности медицины на качественно новый уровень. За свои работы по изучению магнитно-резонансной визуализации (МРВ) Пол С. Латербур и Питер Менсфилд получили Нобелевскую премию в 2003 году[44].
Оптимизация результатов диагностической картины достигается использованием магнитно-резонансных контрастных средств (МРКС). Визуализация с применением контрастного средства позволяет значительно увеличить объем диагностической информации, позволяя оценивать динамику патологических процессов с необходимыми временными и пространственными разрешениями, повысить разрешение и контрастность при анализе малых объектов, достоверно отличить очаги патологий от здоровых тканей[57]. Основными областями применения контрастных средств являются диагностика и идентификация онкологических образований, в том числе метастазирования, а также заболеваний сердечно-сосудистой системы.
На настоящий момент используются парамагнитные контрастные средства, содержащие гадолиний, имеющие ряд недостатков: токсичность и визуализация объектов только по одному основному параметру Т1(время спин-решеточной релаксации)[26]. В связи с чем, актуальным является разработка нового контрастного средства для МРТ – диагностики, превосходящего по функциональным свойствам уже существующие препараты.
Альтернативным контрастным средством может служить препарат, синтезированный с применением современных нанотехнологий, на основе суперпарамагнитных частиц сложного оксида железа – магнетита. Наночастицы магнитных материалов, с размером частиц соизмеримым с размером магнитного домена, при внесении их во внешнее магнитное поле, выстраиваются в нем без энергетических потерь на междоменное взаимодействие, что позволяет значительно повлиять на характерные времена протонной релаксации исследуемых сред и ключевые параметры для магнитно-резонансной визуализации. Требованием, предъявляемым к новому контрастному средству, кроме достижения необходимых релаксационных свойств, является биологическая совместимость используемых наночастиц с основными тканями организма, а также длительная стабильность водного раствора на их основе[43]. Анализ литературных данных показал, что основные свойства наночастиц, а также растворов на их основе, определяются их размером, который контролируется выбором метода и режимов их синтеза[3]. Необходимо учитывать, что практическое применение принципиально нового контрастного средства может потребовать корректировку существующих МРТ - методик анализа очагов патологий[31].
В связи с выше изложенным, целью данной работы является получение коллоидных растворов, содержащих наночастицы оксида железа различных размеров, и исследование их протонно-релаксационных свойств.
.
Для достижения данной цели были поставлены следующие задачи:
1) Определить режимы метода химического синтеза наночастиц сложного оксида железа с учётом требований к их функциональным свойствам.
2) Определить релаксирующую способность полученных растворов наночастиц оксида железа.
3) Определение цитотоксичности раствора наночастиц сложного оксида железа с помощью МТТ- теста.

Оглавление
1.Введение……………………………………………………………..............5
2.Обзор литературы…………………………………………………………...7
2.1.Наночастицы магнетита, их свойства и возможности использования в фармакологии и медицине……………………………………………………….7
2.1.1. Наночастицы магнетита, основные свойства……………………............7
2.1.2.Магнитные свойства НЧОЖ. Суперпарамагнетизм и ферримагнетизм..............................................................................................10
2.2. Протонная релаксометрия …………………………………………............11
2.3. Применение наночастиц магнетита в качестве основы для контрастного средства при МРТ диагностике…………………………………………………16
2.3.1. Метод МРТ-диагностики………………………. ………………………16
2.3.2.Клиническое применение МРТ…………………………………………...17
2.3.3.Показаниями для проведения МРТ с контрастным средством…………………………………………………………………….....19
2.3.4.Противопоказания к МРТ…………………………………………………20
2.4.Классификация магнитно-резонансных контрастных средств…………...25
2.5.Взаимодействие наночастиц оксида железа с клетками. Роль стабилизации…...............................................................................................27
3.Материалы и методы……………………………………………………….31
3.1. Методика экспериментального исследования…………………………….32
3.2.Исследуемые соединения и реактивы……………………………………...31
3.3. Методика получения суперпарамагнитных и ферримагнитных
наночастиц сложного оксида железа…………………………………………...33
3.4. Просвечивающая электронная микроскопия……………………………...34
3.5.Измерения протонно-релаксационных свойств НЧОЖ…………………...34
3.6.Клеточная культура фибробластов крысы………………………………....37
3.7.МТТ-тест……………………………………………………………………..38
3.8. Методы статистической обработки данных……………………………….40
4. Результаты и их обсуждение………………………………………………41
4.1.Синтез растворов на основе наночастиц…………………………………...41
4.2.Анализ кривых спада времен релаксации………………………………….44
4.3.Оценка влияния соединений железа на жизнеспособность фибробластов МТТ-тестом……………………………………………………………………....48
Выводы……………………………………………………………………….51
Список литературы…………………………………………………………..52

1.Введение
На сегодняшний день невозможно представить современную медицину без лучевой диагностики, включающую в себя протонно-эмиссионную томографию, рентгеновскую и магнитно- резонансную томографию (МРТ). Внедрение в клиническую практику метода МРТ позволило вывести диагностические возможности медицины на качественно новый уровень. За свои работы по изучению магнитно-резонансной визуализации (МРВ) Пол С. Латербур и Питер Менсфилд получили Нобелевскую премию в 2003 году[44].
Оптимизация результатов диагностической картины достигается использованием магнитно-резонансных контрастных средств (МРКС). Визуализация с применением контрастного средства позволяет значительно увеличить объем диагностической информации, позволяя оценивать динамику патологических процессов с необходимыми временными и пространственными разрешениями, повысить разрешение и контрастность при анализе малых объектов, достоверно отличить очаги патологий от здоровых тканей[57]. Основными областями применения контрастных средств являются диагностика и идентификация онкологических образований, в том числе метастазирования, а также заболеваний сердечно-сосудистой системы.
На настоящий момент используются парамагнитные контрастные средства, содержащие гадолиний, имеющие ряд недостатков: токсичность и визуализация объектов только по одному основному параметру Т1(время спин-решеточной релаксации)[26]. В связи с чем, актуальным является разработка нового контрастного средства для МРТ – диагностики, превосходящего по функциональным свойствам уже существующие препараты.
Альтернативным контрастным средством может служить препарат, синтезированный с применением современных нанотехнологий, на основе суперпарамагнитных частиц сложного оксида железа – магнетита. Наночастицы магнитных материалов, с размером частиц соизмеримым с размером магнитного домена, при внесении их во внешнее магнитное поле, выстраиваются в нем без энергетических потерь на междоменное взаимодействие, что позволяет значительно повлиять на характерные времена протонной релаксации исследуемых сред и ключевые параметры для магнитно-резонансной визуализации. Требованием, предъявляемым к новому контрастному средству, кроме достижения необходимых релаксационных свойств, является биологическая совместимость используемых наночастиц с основными тканями организма, а также длительная стабильность водного раствора на их основе[43]. Анализ литературных данных показал, что основные свойства наночастиц, а также растворов на их основе, определяются их размером, который контролируется выбором метода и режимов их синтеза[3]. Необходимо учитывать, что практическое применение принципиально нового контрастного средства может потребовать корректировку существующих МРТ - методик анализа очагов патологий[31].
В связи с выше изложенным, целью данной работы является получение коллоидных растворов, содержащих наночастицы оксида железа различных размеров, и исследование их протонно-релаксационных свойств.
.
Для достижения данной цели были поставлены следующие задачи:
1) Определить режимы метода химического синтеза наночастиц сложного оксида железа с учётом требований к их функциональным свойствам.
2) Определить релаксирующую способность полученных растворов наночастиц оксида железа.
3) Определение цитотоксичности раствора наночастиц сложного оксида железа с помощью МТТ- теста.

Список литературы.
1) Berry C., Curtis A. Functionalisation of magnetic nanoparticles for applications in biomedicine // J. Phys. D. Appl. Phys. 2003. V. P.36.
2) Bruce I.J., Sen T. Surface Modification of magnetic nanoparticles with alkoxysilanes and their application in magnetic bioseparations // Langmuir. 2005. V. 21. P. 7029—7035.
3) Ch. H. Vestal, Z.John Zhang // Int.J.of Nanotechnology, V.1, p.240 (2004).(6)
4) Edward A. Neuwelt, Bronwyn E. Hamilton, Csanad G. Varallyay, William R. Rooney,Robert D. Edelman6, Paula M. Jacobs and Suzanne G. Watnick Ultrasmall superparamagnetic iron oxides (USPIOs): a future alternative magnetic resonance (MR) contrast agent for patients at risk for nephrogenic systemic fibrosis (NSF)?//Kidney International (2009) 75, 465–474;
5) Fuentes M., Mateo C., Rodriguez A. et al. Detecting minimal traces of DNA using DNA covalently attached to superparamagnetic nanoparticles and direct PCR-ELISA // Biosensors and Bioelectronics. 2006. V. 21. P. 1574—1580.
6) F. C. Meldrum, N. A. Kotov, J.H. Feodler. Preparation of Particulate Mono- and Multilayers from Surfactant-Stabilized, Nanosized Magnetite Cristallites. American Chemical Society – 1994. – V.98. – P. 4506-4510
7) He X.X., Wang K., Tan W. et al. Bioconjugated nanoparticles for DNA protection from cleavage // J. Am. Chem. Soc. 2003. V. 125. P. 7168—1769.
8) Hong J., Gong P., Xu D. et al. Stabilization of chymotrypsin by covalent immobilization on amine-functionalized superparamagnetic nanogel // J. of Biotechnology. 2007. V. 128. P. 597—605.
9) Jain T.K., Morales M.A., Sahoo S.K. et al. Iron oxide nanoparticles for sustained delivery of anticancer agents // Am. Chem. Soc. 2003. V. 125 (51). P. 15754 —15755.
10) Koneracka M., Kopcansky P., Antalik M. et al. Immobilization of proteins and enzymes to fine magnetic particles // J. Magn. Magn. Mater. 1999. V. 201. P. 427.
11) Koneracka M., Kopcansky P., Timko M. et al. Direct binding procedure of proteins and enzymes to fine magnetic particles // J. Magn. Magn. Mater. 2002. V. 252. P. 409.
12) Kouassi G.K., Irudayaraj J., McCarty G. Activity of glucose oxidase functionalized onto magnetic nanoparticles // BioMagnetic Research and Technology 2005. V. 3 [Электронный ресурс] режим доступа: http://www.biomagres.com/ content/3/1/1.
13) Kin Man Ho, Pei Li. Design and Synthesis of Novel Magnetic Core- Shell Polymeric Particles. American Chemical Society 2008;24(5): 1801-1807
14) Lacava L.M. et al. Magnetic resonance of a dextran-coated magnetic fluid intravenously administered in mice // Biophys. J. 2001.V. 80. P. 2483—2486.
15) Liao M.-H., Chen D.-H. Immobilization of yeast alcohol dehydrogenase on magnetic nanoparticles for improving its stability // Biotechnology Letters. 2001. V. 23. P. 1723—1727.
16) Li X, Du X, Huo T, Liu X, Zhang S, Yuan F. Specific targeting of breast tumor by octreotide-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 3.0-Tesla magnetic resonance scanner.// Acta Radiol. 2009 Jul;50(6):583-94.
17) Louie A.Y., Huber M.M., Ahrens E.T. et al. In vivo visualization of gene expression using magnetic resonance imaging // Nat. Biotechnol. - 2000. - Vol. 18. - P. 321-325.
18) Martinez-Mera I., Espinoza-Pesqueira M.E., Perez-Hernandez R., Arenas-Alatorre J., “Synthesis of magnetite (Fe3 O4 ) nanoparticles without surfactants at room temperature”, Materials Letters, 2007, 61, 4447-4451
19)MacNeil S, Bains S, Johnson C, Idée JM, Factor C, Jestin G, Fretellier N, Morcos SK. Gadolinium contrast agent associated stimulation of human fibroblast collagen production.//InvestRadiol. 2011 Nov;46(11):711-7.
20) Molday R.S., MacKenzie D. Immunospecifc ferromagnetic iron-dextran reagents for the labeling and magnetic separation of cells // J.Immunol. Methods. 1982. V. 52. P. 353—367.
21) Mossman Т. // J. Immunol. Methods, 1983, V. 65, р. 55-63.-45&catid=55:s-22006&Itemid=52
22) M. Taupitz, S. Wagner, J. Schnorr, et al. Phase I Clinical Evaluation of Citrate-coated Monocrystalline Very Small Superparamagnetic Iron Oxide Particles as a New Contrast Medium for Magnetic Resonance Imaging. Investigative Radiology 2004;39:394-405.
23) Pardoe H., Chua-Anusorn W., St. Pierre T. G., Dobson J. Structural and magnetic properties of nanoscale iron oxide particles synthesized in the presence of dextran or polyvinyl alcohol // J. Magn. Magn. Mater. V. 225. P. 41—46.
24) PangS.C., Chin S.F., Anderson M.A., “Redox Equilibria of iron oxides in aqueous-based magnetite dispersions: Effect of the pH and redox potential”, J. Colloid and Interface Sci., 2007, 311, 94-101
25) Pedro Tartaj P., Serna C.J. Synthesis of monodisperse superparamagnetic Fe/Silica nanospherical composites // J. Am. Chem. Soc. 2003. № 125 (51). Р. 15754—15755.
26) Port M., Idee J.M., Medina C. et al. Efficiency, thermodynamic and kinetic stability of marketed gadolinium chelates and their possible clinical consequences: a critical review // Biometals. -2008. - Vol. 21. - P. 469-490.
27) Portet D., Denoit B., Rump E. et al. Nonpolymeric coatings of iron oxide colloids for biological use as magnetic resonance imaging contrast agents // J. Coll. Inter. Sci. 2001. V. 238. P. 37—42.
28) Robinson D.B., Persson H.H.J., Zeng H. et al. DNA-Functionalized MFe2O4 (M = Fe, Co, or Mn) Nanoparticles and Their Hybridization to DNA-Functionalized Surfaces // Langmuir 2005. V. 21. P. 3096—3103.
29) Salata O.V. Applications of nanoparticles in biology and medicine [Электронный ресурс]. Режим доступа: http://www.jnanobiotechnology.com/content/2/1/3
30)Абрагам А., Ядерный магнетизм, пер. с англ., М., 1963
31) Акопджанов А.Г, Шимановский Н.Л., Науменко В.Ю., Семейкин А.В., Старостин К.М., Быков И.В., Манвелов Э.В.. Перспективы применения суперпарамагнитных наночастиц магнетита в качестве магнитно-резонансного контрастного средства. Сборник статей IV съезда фармакологов России. Сентябрь 2012. с.8.
32)Александров И. В., Теория магнитной релаксации. Релаксация в жидкостях и твердых неметаллических парамагнетиках, М., 1975
33)Баранов Д.А., «Магнитные наночастицы: проблемы и достижения химического синтеза», 2009.
34)Белов К.Л. Электронные процессы в магнетите. Успехи физических наук.- 1993г. – Том 163 №5.
35)Вонсовский С. В., Суперпарамагнетизм, в кн.: Физический энциклопедический словарь, т. 5, М., 1966, с. 103; его же, Магнетизм, М., 1971, с. 805.
36)Губин С.П., Кокшаров Ю.А., Хомутов Г.Б., Юрков Г.Ю. Магнитные наночастицы: методы получения, строение и свойства. Успехи химии. – 2005. – № 74(6). – С. 539-574.
37)Зильберман Г.Е. Электричество и магнетизм, М.:Наука, 1970.- 384с.
38)Коновалов А.Н., Корниенко В.Н., Пронин И.Н. Магнитно-резонансная томография в нейрохирургии. – М.: Кондор-М., 1997. – 697 с.
39)Ландау Л. Д., Лифшиц Е. М., Теория поля, 7 изд., М., 1988; Ахиезер А. И., Ахиезер И. А., Электромагнетизм и электромагнитные волны, М., 1985.
40)Лучевая диагностика рассеянного склероза: Т. Н. Трофимова, Н. А. Тотолян, А. В. Пахомов — Санкт-Петербург, ЭЛБИ-СПб, 2010 г.- 128 с.
41)Магнитно-резонансная спектроскопия: Под редакцией Г. Е. Труфанова, Л. А. Тютина — Москва, ЭЛБИ-СПб, 2008 г.- 240 с
42)Магнитно-резонансная томография: практическое руководство К. Уэстбрук, ТД Бином, 2012г.
43)НАМ И. Ф., ЯНОВСКИЙ В. А., ШИПУНОВ Я. А. СОВРЕМЕННЫЕ ТЕНДЕНЦИИ СОЗДАНИЯ КОНТРАСТНЫХ СРЕДСТВ ДЛЯ МАГНИТНО-РЕЗОНАНСНОЙ ТОМОГРАФИИ // СМЖ (Томск). 2012. №3. С.134-137.
44)НиТ. Нобелевские лауреаты, 2003
45) Сивухин Д. В. Общий курс физики. — В 5 т. — Т. II. Термодинамика и молекулярная физика. — М.: ФИЗМАТЛИТ, 2005
46) Синицын В.Е., С.П.Морозов, Справочник поликлинического врача Том 04/N 4/2006, consilium-medicum.com
47)Сликтер Ч., Основы теории магнитного резонанса, пер. с англ., 2 изд., М., 1981
48)Стандарты РКТ и МРТ-исследований с внутривенным контрастированием в онкологии / Долгушин Б.И. и соавт., Российский онкологический научный центр им. Н.Н.Блохина. – РАМН, 2011. – 58 с.
49)Хорнак Дж. П. Основы МРТ (1996—1999)
50) Черепович В.С, Е. В. Волочник,Е. В. Антоненко, Е. С. Лоткова, Т. В. Романовская, В. В. Гринев Оптимизация критических параметров МТТ-теста для оценки клеточной и лекарственной цитотоксичности БГМУ // http://bsmu.by/index.php?option=com_content&view=article&id=1943:2010-01-26-10-10
51)Шимановский Н.Л., Науменко В.Ю., Акопджанов А.Г., Манвелов Э.В. Возможности применения наночастиц магнетита для диагностики и лечения онкологических заболеваний. Лекарственные средства №1(2) 2011.
52)Шимановский Н.Л., Акопджанов А.Г., Сергеев А.И., Манвелов Э.В.,
Семейкин А.В., Науменко В.Ю., Панов В.О., Быков И.В.
Фармакологические свойства наночастиц сложного оксида железа как
субстанции магнитно-резонансного контрастного средства.
53)Шимановский Н.Л.Контрастные средства: руководство по рациональному применению. –М.: ГЭОТАР_Медиа, 2009. – 464 с.: ил. (Библиотека врача_специалиста).
54) Н. Л. Шимановский, М. А. Епинетов, М. Я. Мельников, Молекулярная и нанофармакология, 2010.
55)Экспериментальная и клиническая фармакология. Том №73 №6 с.23-28. 2010.
56) Ядерный магнитный резонанс; под ред. П. М. Бородина, Л., 1.982;
57)Якобсон М.Г., Подоплелов А.В., Рудых С.Б. Введение в МР-томографию. – Новосибирск: СО РАМН. – 1991. – 271 с.









Купить эту работу

Магнитные наночастицы, как средство влияния на релаксационные свойства водородосодержащих биологических сред

1200 ₽

или заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 3000 ₽

Гарантии Автор24

Изображения работ

Страница работы
Страница работы
Страница работы

Понравилась эта работа?

или

20 апреля 2015 заказчик разместил работу

Выбранный эксперт:

Автор работы
user186168
4.9
Магистр
Купить эту работу vs Заказать новую
0 раз Куплено Выполняется индивидуально
Не менее 40%
Исполнитель, загружая работу в «Банк готовых работ» подтверждает, что уровень оригинальности работы составляет не менее 40%
Уникальность Выполняется индивидуально
Сразу в личном кабинете Доступность Срок 1—6 дней
1200 ₽ Цена от 3000 ₽

5 Похожих работ

Отзывы студентов

Отзыв Талгат Талгат об авторе user186168 2015-05-13
Дипломная работа

Автор просто спас меня! Нужно было в сжатые сроки сделать работу! Он всё сделал. По срокам не задержал. Требовались небольшие доработки, но он всё доработал и помог мне очень сильно! Спасибо!

Общая оценка 5
Отзыв bmarw об авторе user186168 2016-06-27
Дипломная работа

Автор отлично выполнил работу!

Общая оценка 5
Отзыв Pavel A. об авторе user186168 2017-06-12
Дипломная работа

Профессионал, нет слов!

Общая оценка 5
Отзыв sherhan5373 об авторе user186168 2014-06-06
Дипломная работа

Доволен работой автора

Общая оценка 5

другие учебные работы по предмету

Готовая работа

Получение каучука марки СКИ-3С

Уникальность: от 40%
Доступность: сразу
15000 ₽
Готовая работа

Виробництво 2-хлорбензойної кислоти / Производство 2-хлорбензойной кислоты (на укр. языке)

Уникальность: от 40%
Доступность: сразу
2500 ₽
Готовая работа

Установка производства Эмульсола ЭКС-А

Уникальность: от 40%
Доступность: сразу
3300 ₽
Готовая работа

Каталитические свойства соединений родия

Уникальность: от 40%
Доступность: сразу
1000 ₽
Готовая работа

влияние продуктов пчеловодства на белковый обмен

Уникальность: от 40%
Доступность: сразу
2240 ₽
Готовая работа

Пеномоющие композиции. Шампунь

Уникальность: от 40%
Доступность: сразу
2800 ₽
Готовая работа

Определение морфогенетического потенциала in vitro различных родов Salvia L.

Уникальность: от 40%
Доступность: сразу
2240 ₽
Готовая работа

Установка получения дорожных битумов марки БНД - 60/90

Уникальность: от 40%
Доступность: сразу
2000 ₽
Готовая работа

Сравнительный анализ побочных фармакологических эффектов контрацептивных препаратов системного действия

Уникальность: от 40%
Доступность: сразу
2240 ₽
Готовая работа

Обоснование требований к токсикологическим свойствам инкапаситирующих композиций

Уникальность: от 40%
Доступность: сразу
2500 ₽
Готовая работа

ВКР цех по производству керамической плитки. В состав выпускной квалификационной работы входят: Пояснительная записка 88 страниц машинописного текста,

Уникальность: от 40%
Доступность: сразу
5000 ₽
Готовая работа

Основные контролирующие органы фармацевтической деятельности. Анализ характера проверок аптечных организации.

Уникальность: от 40%
Доступность: сразу
3300 ₽